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ABSTRACT
Let f ∈ Q[X1, . . . , Xn] be of degree D. Algorithms for solv-
ing the unconstrained global optimization problem f? =
infx∈Rn f(x) are of first importance since this problem ap-
pears frequently in numerous applications in engineering sci-
ences. This can be tackled by either designing appropri-
ate quantifier elimination algorithms or by certifying lower
bounds on f? by means of sums of squares decompositions
but there is no efficient algorithm for deciding if f? is a
minimum.

This paper is dedicated to this important problem. We
design a probabilistic algorithm that decides, for a given
f and the corresponding f?, if f? is reached over Rn and
computes a point x? ∈ Rn such that f(x?) = f? if such a
point exists. This algorithm makes use of algebraic elimi-
nation algorithms and real root isolation. If L is the length
of a straight-line program evaluating f , algebraic elimina-

tion steps run in O
(

log(D− 1)n6(nL+n4)U
(
(D− 1)n+1

)3)
arithmetic operations in Q where D = deg(f) and U(x) =

x
(

log(x)
)2

log log(x). Experiments show its practical effi-
ciency.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.1.6 [Mathematics of
computing]: Numerical Analysis—Optimization

General Terms
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1. INTRODUCTION
Motivations and problem statement. Consider the global
optimization problem f? = infx∈Rn f(x) with f ∈ Q[X1, . . . ,
Xn]. Solving these problems is of first importance since they
occur frequently in engineering sciences (e.g. in systems the-
ory or system identification [15]) or in the proof of some
theorems (see [10, 18]). However, this infimum can be un-
reached: consider the polynomial f(x, y) = (xy − 1)2 + x2.
As a sum of squares, f ≥ 0. But f has only one critical
value, f(0, 0) = 1, whereas f(1/`, `) tends to 0 when ` tends
to ∞. Thus, f? = 0, which is not a value taken by f .

Lower bounds on f? can be computed via sums of squares
decompositions which provide algebraic certificates of pos-
itivity [17, 22]. Following [21], this solving process can be
improved when it is already known that f? is a minimum
but, in this framework, there is no given algorithm to test if
f? is a minimum. Global optimization problems can also be
tackled via quantifier elimination (see [7, Chap. 14] or a ded-
icated algorithm in [25]). The algorithm given in [7, Chap.
14] allows to decide if f? is a minimum within a complex-

ity DO(n) but the complexity constant in the exponent is so
large that it can’t be used in practice. The algorithm given
in [25] is much more efficient in practice but does not decide
if f? is a minimum. Our goal is to tackle this important
problem.

To decide if f? is a minimum, it is sufficient to decide if
f − f? = 0 has real solutions. Recall that f? is a real alge-
braic number whose degree may be large. Thus, one would
prefer to decide if the real algebraic set defined by ∂f

∂X1
=

· · · = ∂f
∂Xn

= 0 contains a point x such that f(x) = f?. Dif-
ficulties arise when the aforementioned system generates an
ideal which is not equidimensional and/or not radical and/or
defines a non-smooth real algebraic set. This task could be
tackled by using algorithms in [7, Chap. 14] running in time

DO(n) (where D = deg(f)) but, again, the complexity con-
stants (in the exponent) are so large that these algorithms
can’t be used in practice. Other algorithms based on the
so-called critical point method whose complexities are not
known are described in [1, 27]. Another alternative consists
in using Collins’Cylindrical Algebraic Decomposition [8].

We provide a probabilistic algorithm that decides if f?

is a minimum. When f? is reached, it computes also a

minimizer. It runs within Õ
(
n6(nL+ n4)U

(
(D − 1)n+1

)3)
arithmetic operations in Q, where D = deg(f) and U(x) =

x
(

log(x)
)2

log log(x). Experiments show that it is practi-



cally more efficient of several orders of magnitude than other
algorithms that can be used for a similar task.

Related works. Using computer algebra techniques to solve
global optimization problems is an emerging trend. These
problems are tackled using sums-of-squares decomposition
to produce certificates of positivity [17, 22, 21, 14, 28] or
quantifier elimination [7, 25]. The objects used in this paper
are similar to those used in [14] where the existence of new
algebraic certificates based on sums of squares are proved.
Such objects are also used in [25] to design an efficient algo-
rithm computing the global infimum of a multivariate poly-
nomial over the reals.

Polar varieties are introduced in computer algebra in [2] to
grab sample points in smooth equidimensional real algebraic
sets (see also [3, 4, 26, 27, 5] and references therein). The
interplay between properness properties of polar varieties
to answer algorithmic questions in effective real algebraic
geometry is introduced in [26]. An algorithm computing real
regular points in singular real hypersurfaces is given in [6].
An algorithm for computing real points in each connected
component of the real counterpart of a singular hypersurface
is given in [24].

The paper is organized as follows. The algorithm is de-
scribed in Section 2. Then in Section 3 we present the prac-
tical performances. A complexity analysis is done in Section
4. Finally, we give the correctness proof in Section 5.

2. DESCRIPTION OF THE ALGORITHM
We present now the algorithm. It takes as input a polyno-

mial f ∈ Q[X] bounded from below, P a univariate polyno-
mial in Q[T ] and I a real interval such that f? = infx∈Rn f(x)
is the unique root of P in I. Such a polynomial can be ob-
tained with the algorithm given in [25].

Given a matrix A ∈ GLn(Q) and a polynomial f , we
denote by fA the polynomial fA(X) = f(AX).

Our algorithm is probabilistic: the correctness of the out-
put depends on the choice of a random matrix A. We prove
in Section 5 that the bad choices of A (that is the choices of
A such that the algorithm fails or returns a wrong result)
are contained in a strict Zariski-closed subset of GLn(Q).
Practically, this means that for a generic choice of A, the
algorithm returns a correct result.

To describe the algorithm, we need to introduce some clas-
sical subroutines in polynomial system solving solvers. A
representation of an algebraic variety V means a finite set
of polynomials generating V or a geometric resolution of V
(see [13, 20]).

• DescribeCurve: takes as input a finite set of polynomials
F ⊂ Q[X] and a polynomial g ∈ Q[X] and returns a rep-

resentation of V (F)− V (g)
Z

if its dimension is at most 1,
else it returns an error.
• Intersect: takes as input a representation of a variety V

whose dimension is at most one and polynomials g1, . . . , gs
and returns a representation of V ∩ V (g1, . . . , gs).
• RealSolve: takes as input a rational parametrization of a

0-dimensional system V , f , the univariate polynomial P
and an interval I isolating one real root f? of P ; it decides
if there exists a real point x ∈ V such that f(x) = f? by
returning a polynomial R for which x is a root and a box
isolating x if such a point exists, else it returns false.

Note that DescribeCurve and Intersect can be implemented

using any algebraic elimination technique (e.g. Gröbner ba-
sis, triangular sets, geometric resolution). The routine Re-
alSolve relies exclusively on univariate evaluation and real
root isolation.

IsReached
Input: f ∈ Q[X1, . . . , Xn] bounded below. A real interval I
and P ∈ Q(T ) encoding f? = infx∈Rn f(x).
Output: a boolean which equals false if f? is not reached, a
list L containing a polynomial and an interval encoding a point
x such that f(x) = f? if f? is reached.

1. choose randomly A ∈ GLn(Q).

2. For 1 ≤ i ≤ n− 1 do

a. Cn−i+1 ← DescribeCurve([X≤i−1,
∂fA

∂Xi+1
, . . . , ∂fA

∂Xn
], ∂fA

∂X1
)

b. Fn−i+1 ← Intersect(Cn−i+1,
∂fA

∂X1
, . . . , ∂fA

∂Xi
);

c. If L← RealSolve(Fn−i+1, f, P, I) is not empty return L.

3.a. F1 ← [X≤n−1,
∂fA

∂X1
, . . . , ∂fA

∂Xn
];

b. If L→ RealSolve(F1, f, P, I) is not empty return L.

4. return false.

3. PRACTICAL PERFORMANCES
We have implemented our algorithm using Gröbner ba-

sis engine FGb implemented in C by J.-C. Faugère [11]. We
also used some results in [27] for computing the set of non-
properness of a polynomial map to check properness assump-
tions required to apply Theorem 1.

Examples named K1, K2, K3, K4, Vor1, and Vor2 are
coming from applications and extracted from [18, 10]. We
also consider a polynomial available at
http://www.expmath.org/extra/9.2/sottile/SectIII.7.html.

Computations have been performed on a PC under Scien-
tific Linux OS release 5.5 on Intel(R) Xeon(R) CPUs E5420
at 2.50 GHz with 20.55G RAM. All these examples are
global optimization problems arising in computer proofs of
Theorems in computational geometry or related areas. In
this context, exhibiting a minimizer is sometimes meaningful
for the geometric phenomenon under study. None of these
examples can be solved using the implementations QEPCAD,
and REDLOG of Collins’ Cylindrical Algebraic Decomposi-
tion within one week of computation, even when providing
to CAD solvers the fact that f? is an infimum. Also, our
implementations of [1, 27] fail on these problems in less than
one week.

The columns D, n and ]Terms contain respectively the
degree, the number of variables and the number of terms of
the considered polynomial. As one can see, the implemen-
tation of our algorithm outperforms other implementations
since one can solve previously unreachable problems.

D n ]Terms Time
Sot1 24 4 677 3 h.
Vor1 6 8 63 < 1 min.
Vor2 5 18 253 5 h.
K1 4 8 77 < 1 min.
K2 4 8 53 < 1 min.
K3 4 8 67 < 1 min.
K4 4 8 45 < 1 min.

4. COMPLEXITY RESULTS
Let F = (f1, . . . , fs) and g in Q[X1, . . . , Xn] of degree

bounded by d given by a straight-line program of size ≤ L.



We denote by δai the algebraic degree of V (f1, . . . , fi), δ
a the

maximum of the previous δai and U(x) = x(log x)2 log log x
(see [20]). We only estimate the complexities of steps rely-
ing on algebraic elimination algorithms (DescribeCurve and
Intersect) using the following subroutines:

• GeometricSolve ([20]): given F and g as above, returns an

equidimensional decomposition of V (F) \ V (g)
Z

, encoded
by a set of irreducible lifting fibers, in time

O
(
s log(d)n4(nL+ n4)U(dδa)3

)
.

• LiftCurve ([20]): given an irreducible lifting fiber F of the
above output, returns a rational parametrization of the
lifted curve of F in time

O
(
s log(d)n4(nL+ n4)U(dδa)2

)
.

• OneDimensionalIntersect ([13] removing the Clean step): if
〈F〉 is 1-dimensional, I a geometric resolution of 〈F〉 and
a polynomial g, it returns a rational parametrization of
V (I + g) in time O

(
n(L+ n2)U(δa)U(dδa)

)
.

We deduce the complexity of the algebraic steps of our al-
gorithm:

Proposition 1. Let D be the degree of a polynomial f ∈
Q[X1, . . . , Xn] bounded below. There exists a probabilistic
algorithm deciding whether the infimum of f is reached over
the reals or not with a complexity within

O
(

log(D − 1)n6(nL+ n4)U
(
(D − 1)n+1)3)

arithmetic operations in Q.
Proof. We use LiftCurve with the output of GeometricSolve
to obtain our DescribeCurve. Then we compute n geometric
resolutions for n polynomials of degree at most D − 1 us-
ing OneDimensionalIntersect as our Intersect routine. Using
the Refined Bézout Theorem (see Theorem 12.3 and Exam-
ple 12.3.1 page 223 in [12]) we can bound δa by (D − 1)n.
Replacing s with n and δa with (D− 1)n in the above com-
plexity results and remarking that the costs of other steps
are negligible ends the proof.

5. PROOF OF CORRECTNESS
Notations and basic definitions. For any set Y in a eu-
clidean space, we denote by Y the closure of Y for the eu-

clidean topology and by Y
Z

the Zariski closure of Y . With-
out more precision, a closed set means a closed set for the
euclidean topology.

For A ∈ GLn(R) and g ∈ Q[X1, . . . , Xn], we write gA(X)=
g(AX). Similarly, if G = (g1, . . . , gs) is a finite subset
of Q[X1, . . . , Xn], GA = (gA1 , . . . , g

A
s ). If I is an ideal of

Q[X1, . . . , Xn], IA is the ideal {gA | g ∈ I}.
We will consider objects, called polar varieties which are

close to the ones already used in [2, 26] in the framework
of non-singular algebraic sets. These objects are related to
some projections. For 1 ≤ i ≤ n − 1, we will denote by Πi

the canonical projection (x1, . . . , xn) → (x1, . . . , xi) and by
ϕi the canonical projection (x1, . . . , xn)→ xi.

For g ∈ Q[X1, . . . , Xn], 1 ≤ i ≤ n and A ∈ GLn(Q), we
define

• 0i−1 denotes the hyperplane in Cn defined by X1 = · · ·=
Xi−1 =0; by convention 00 denotes Cn;

• WA,g
n−i+1 = V

(
gA, ∂gA

∂Xi+1
, . . . , ∂gA

∂Xn

)
;

• CA,g
n−i+1 =

(
V
(

∂gA

∂Xi+1
, . . . , ∂gA

∂Xn

)
∩ 0i−1

)
\ V

(
∂gA

∂X1

)Z
;

• FA,g
n−i+1 = CA,g

n−i+1 ∩ V
(

∂gA

∂X1
, . . . , ∂gA

∂Xi

)
.

When i = n, WA,g
n−i+1 = V (gA) and CA,g

1 = 0n−1 by con-
vention. The superscript g will be omitted when there is no
ambiguity.

We will also make use of the notion of properness of a
polynomial map. Given a polynomial map ϕ : Y → Z where
Y and Z are euclidean spaces, we will say that ϕ is proper
at z ∈ Z if there exists a closed ball B ⊂ Z containing z
such that ϕ−1(B) is closed and bounded. The map ϕ will
be said to be proper if it is proper at any point in Z.

For i = 0, we denote by WA
0 the algebraic set

WA
0 = V

(
∂fA

∂X2
, . . . ,

∂fA

∂Xn

)
\ V

(
∂fA

∂X1

)Z
.

For 1 ≤ i ≤ n− 2, we denote by WA
i the algebraic set

WA
i = V

(
X1, . . . , Xi,

∂fA

∂Xi+2
, . . . ,

∂fA

∂Xn

)
\ V

(
∂fA

∂Xi+1

)Z
.

At last for i = n − 1, WA
n−1 stands for the algebraic set

V(X1, . . . , Xn−1).
Let CA be a connected component of V(fA) ∩ Rn. For

0 ≤ k ≤ n−2, we denote by CA
k = V(X1, . . . , Xk)∩CA ⊂ Rn

and by πk+1 the canonical projection

πk+1 : Rn−k −→ R
(xk+1, . . . , xn) 7−→ xk+1

.

We will say that, given A ∈ GLn(C), property P(A) holds
if, for 1 ≤ i ≤ n, there exists algebraic sets V A

n−i+1 ⊂ V (fA−
f?) such that for all connected component CA of V (fA −
f?) ∩ Rn

• the restriction of Πi−1 to V A
n−i+1 is proper;

• the boundary of Πi(C
A) is contained in Πi(C

A∩V A
n−i+1).

• for 1 ≤ i ≤ n−1, for all point x in a connected component
CA⊂V (fA−f?)∩Rn not belonging to V A

n−i+1, there exists
a ball B containing x such that dim(Πi(B ∩ CA)) = i.

Following [26], the properness property of Πi−1 implies that
dim(V A

n−i+1) ≤ i−1. We will prove in the sequel that P(A)
holds for a generic choice of A by considering more general
algebraic sets than polar varieties.

We will also say that property Q(A) holds if for all 1 ≤
i ≤ n, WA,f−ε

n−i+1 ∩0i−1∩V
(

∂fA

∂X1

)
(where ε is an infinitesimal)

is empty.

Sketch of proof. Let f ∈ Q[X1, . . . , Xn] and f? = inf
x∈Rn

f(x).

Theorem 1. Suppose that f? > −∞. Let A ∈ GLn(Q)
be such that P(A) and Q(A) hold. Then, the union of
the sets ∪n

i=1F
A
n−i+1 meets every connected component of

V (fA − f?) ∩ Rn.

Under the assumption that P(A) and Q(A) hold, the
above result allows us to reduce the problem of deciding
the emptiness of V (fA − f?) ∩ Rn to the one of deciding
the emptiness of

(
∪n

i=1F
A
n−i+1

)
∩ V (fA − f?) ∩ Rn. Sup-

posing that ∪n
i=1F

A
n−i+1 has dimension 0, any solver for 0-

dimensional polynomial system can be used to decide the
emptiness of V (fA − f?) ∩ Rn.

Thus, Theorem 1 is algorithmically useful if it is easy to
ensure that P(A) and Q(A) hold and if the set ∪n

i=1F
A
n−i+1



have dimension 0. The result below ensures that Q(A) holds
for a generic choice of A and that the set ∪n

i=1F
A
n−i+1 has

dimension at most 0.

Theorem 2. There exists a non-empty Zariski-open set
O ⊂ GLn(C) s.t. for all A ∈ GLn(Q) ∩ O and 1 ≤ i ≤ n,

• the sets CA
n−i+1 have dimension at most 1

• the sets FA
n−i+1 have dimension at most 0;

• the sets WA,f−ε
n−i+1 ∩ 0i−1 ∩ V

(
∂fA

∂X1

)
are empty

Finally, it remains to show how to ensure P(A) in order to
apply algorithmically Theorem 1. Again, the result below
ensures P(A) holds if A is chosen generically.

Theorem 3. Let V ⊂ Cn be an algebraic variety of di-
mension d. There exists a non-empty Zariski-open set O ⊂
GLn(C) such that for all A ∈ GLn(Q)∩O, and 1 ≤ i ≤ d+1,
there exist algebraic sets V A

n−i+1 ⊂ V A such that for all con-
nected component CA of V A ∩ Rn

(i) the restriction of Πi−1 to V A
n−i+1 is proper;

(ii) the boundary of Πi(C
A) is contained in Πi(C

A∩V A
n−i+1).

(iii) for all point x in a connected component CA ⊂ V (fA −
f?) ∩ Rn not belonging to V A

n−i+1, there exists a ball B
containing x such that dim(Πi(B ∩ CA)) = i.

The proof of Theorem 2 is widely inspired by [2]; the proof
of Theorem 3 is inspired by [26] and a construction intro-
duced in [27].

Proof of Theorem 1. We start with a Lemma which is a
consequence of P(A).

Lemma 1. Suppose that P(A) holds and let CA be a con-
nected component of V (fA − f?) ∩ Rn. There exists i0 ∈
{1, . . . , n−1} and a connected component ZA

i0 of CA∩0i0−1∩
Rn such that ϕi0(ZA

i0 ) 6= R and there exists x ∈ ZA
i0 such that

a = ϕi0(x) lies in the boundary of ϕi0(ZA
i0 ). Moreover, there

exists r > 0 such that B(x, r) ∩ ZA
i0 ∩ ϕ

−1
i0

(a) = {x}.
Proof. Since P(A) holds, the boundary of Πi(C

A) is con-
tained in Πi(C

A ∩ V A
n−i+1) for 1 ≤ i ≤ n− 1. In particular,

this implies that Πi(C
A) is closed.

Consider the largest i0 ∈ {1, . . . , n − 1} such that CA ∩
0i0−1 6= ∅ and CA ∩ 0i0 = ∅; whence ϕi0(CA ∩ 0i0−1) is a
union of segments in the Xi0 -axis. This implies that there
exists y in the intersection of Πi0(CA ∩ 0i0−1) with the
boundary of Πi0(CA). Note also that since Πi0(CA

i0 ∩0i0−1)
is a union of segments in the Xi0 -axis not containing the
origin of this axis, one can choose y such that its Xi0 -
coordinate belongs to the boundary of ϕi0(CA ∩ 0i0−1).

Since P(A) holds, the boundary of Πi0(CA) is itself con-
tained in Πi0(CA ∩ V A

n−i0+1). Consequently, there exists

x ∈ CA ∩ V A
n−i0+1 such that Πi0(x) = y. Moreover, since

y ∈ Πi0(CA ∩ 0i0−1), x ∈ 0i0−1. Let now ZA
i0 be the con-

nected component of CA∩0i0−1 ⊂ V (fA−f?)∩0i0−1∩Rn

containing x. Obviously, ZA
i0 ⊂ C

A is also a connected com-

ponent of V (fA − f?) ∩ 0i0−1 ∩ Rn and, by construction
x ∈ ZA

i0 lies in CA ∩ 0i0−1 ∩ V A
n−i0+1. Since we have cho-

sen y such that its Xi0 -coordinate lies in the boundary of
ϕi0(CA ∩ 0i0−1), this implies that ϕi0(x) lies in the bound-
ary of ϕi0(ZA

i0 ).
Let a = ϕi0(x). It remains to prove that there exists r > 0

such that ϕ−1
i0

(a)∩ZA
i0∩B(x, r) = {x}. To do that, we prove

that it has dimension 0.

Suppose on the contrary that there exists a connected
semi-algebraic set γ ⊂ ϕ−1

i0
(a) ∩ ZA

i0 containing x such that
γ 6= {x}. Then, by construction, Πi0(γ) = Πi0(x). Re-
call that Πi0(x) lies in the boundary of Πi0(CA). Since
P(A) holds Πi0(γ) ∈ Πi0(V A

n−i0+1) and the restriction of

Πi0−1 to V A
n−i0+1 is proper. This latter property implies

that the restriction of Πi0−1 to V A
n−i0+1 is finite. Recall that

x ∈ 0i0−1, thus there exists r > 0 small enough for which
γ ∩ V A

n−i0+1 ∩ B(x, r) = {x}. Since we have supposed that
γ 6= {x}, there exists x′ ∈ γ ∩ B(x, r) \ {x}; consequently
x′ /∈ V A

n−i0+1. Since P(A) holds, there exists a ball B con-

taining x′ such that dim
(
πi0(B ∩ CA)

)
= i0. This implies

that πi0(x′) = πi0(x) is not in the boundary of πi0(CA), a
contradiction. �

Now, let CA be a connected component of V (fA − f?) ∩
Rn. Remark that at all points of CA, all the partial deriva-
tives of fA vanish. By the above Lemma, there exists a
connected component ZA

i0 of V (fA − f?) ∩ 0i0−1 ∩ Rn such

that ZA
i0 ⊂ CA and ϕi0(ZA

i0 ) 6= R but is closed since P(A)
holds. Note that this implies that all partial derivatives of
fA vanish at all points of ZA

i0 .

We prove below that ZA
i0 has a non-empty intersection

with CA
n−i0+1. Since ZA

i0 ⊂ C
A and all the partial derivatives

of fA vanish at any point of CA, this will conclude the proof.
Let H be a real hyperplane orthogonal to the Xi0 -axis

which does not meet ϕi0(ZA
i0 ). Because ϕi0(ZA

i0 ) is a closed

and strict subset of R, dist(ZA
i0 , H) between ϕi0(ZA

i0 ) and H

is reached at a point x? in ZA
i0 . By Lemma 1, one can also

assume that there exists r > 0 such that x? is the unique
minimizer of dist(ZA

i0 , H) in the ball B(x?, r). To finish the
proof of Theorem 1, it is sufficient to prove the lemma below.

Lemma 2. The point x? ∈ CA belongs to Cn−i0+1.

Additionally, up to choosing a small r > 0, one can sup-
pose that B(x?, r) ∩

((
V (fA − f?) ∩ 0i0−1

)
\ ZA

i0

)
= ∅.

Roughly speaking, the idea of the proof is to consider
algebraic sets V (fA − (f? + e)) ∩ 0i0−1 for small enough
e > 0 which are “deformations” of V (fA − f?) ∩ 0i0−1, and
exhibit a sequence of points (xe)e lying in Cn−i0+1∩B(x?, r)
which converge to x? when e → 0. To do that rigorously,
we need to use materials about infinitesimals and Puiseux
series that we introduce now.

Preliminaries on infinitesimals and Puiseux series. We
denote by R〈ε〉 (resp. C〈ε〉) the real closed field (resp. al-
gebraically closed field) of algebraic Puiseux series with co-
efficients in R (resp. C), where ε is an infinitesimal. We
will use the classical notions of bounded elements in R〈ε〉n
(resp. Cn) over Rn (resp. Cn) and their limits. The limit
of a bounded element z ∈ R〈ε〉n (resp. z ∈ R〈ε〉n) will be
denoted by lim0(z). The ring homomorphism lim0 will also
be used on sets of R〈ε〉n and C〈ε〉n

Also for semi-algebraic sets S ⊂ Rn defined by a sys-
tem of polynomial equations and inequalities, we will denote
by ext(S,R〈ε〉) the solution set of the considered system in
R〈ε〉n. We refer to [7, Chap. 2.6] for precise statements of
these notions.
Proof of Lemma 2. We simplify the notations by letting fA =
fA−f? and V (fA)i0−1 = V (fA)∩0i0−1. By [23, Lemma 3.6],
V (fA)i0−1 ∩ Rn = lim0

(
V (fA − ε) ∪ V (fA + ε)

)
∩ 0i0−1 ∩

Rn = lim0(V (fA − ε) ∩ 0i0−1) ∩ Rn. Then, there exists a
connected component CA

ε ⊂ R〈ε〉n of V (fA − ε) ∩ 0i0−1 ∩
R〈ε〉n such that CA

ε contains a xε such that lim0(xε) = x?.



Thus ext(B(x?, r),R〈ε〉)∩CA
ε 6= ∅. Since ext(B(x?, r),R〈ε〉)

is bounded over R, dist
(
CA

ε ∩ext(B(x?, r),R〈ε〉), ext(H,R〈ε〉)
)

is also bounded over R; let d0 be its image by lim0. Since r
has been chosen such that B(x?, r) has an empty intersec-
tion with all connected components of V (fA)i0−1∩Rn which
are not CA, all points in CA

ε ∩ext(B(x?, r) have their image
by lim0 in ZA

i0 . This implies that d0 = dist(ZA
i0 , H).

Let S(x?, r) ⊂ Rn be the sphere centered at x? of radius
r. Suppose for the moment that all points in

ext(S(x?, r),R〈ε〉) ∩ CA
ε

don’t minimize dist
(
CA

ε ∩ ext(B(x?, r),R〈ε〉), ext(H,R〈ε〉)
)
.

Thus dist
(
CA

ε ∩ ext(B(x?, r),R〈ε〉), ext(H,R〈ε〉)
)

is realized

at a point x?
ε∈CA

ε lying in the interior of ext(B(x?, r),R〈ε〉).
Remark that this also implies that x?

ε is bounded over R.
Since d0 =dist(CA, H) and x? is the unique point of B(x?, r)∩
CA realizing dist(CA, H), x? = lim0(x?

ε). Since CA
n−i0+1 is

defined by polynomials with coefficients in Q, in order to
conclude it remains to prove that x?

ε lies in ext(CA
n−i0+1,R〈ε〉).

Moreover, by the implicit function theorem [7, Chap. 3.5],
∂fA

∂Xi0+1
, . . . , ∂fA

∂Xn
vanish at x?

ε ∈ V (fA−ε)∩0i0−1. By Q(A),

this implies that ∂fA

∂X1
doesn’t vanish at x?

ε . Consequently,

x?
ε lies in ext(CA

n−i0+1,R〈ε〉).
Now, we prove the claim announced above, that is that

dist
(
CA

ε ∩ ext(B(x?, r),R〈ε〉), ext(H,R〈ε〉)
)

is not reached

at ext(S(x?, r),R〈ε〉) ∩ CA
ε . Suppose on the contrary that

there exists xε ∈ ext(S(x?, r),R〈ε〉)∩CA
ε which realizes this

distance. Since xε ∈ ext(S(x?, r),R〈ε〉), xε is bounded over
R and its image by lim0, that we will denote by x0, lies in
S(x?, r) since S(x?, r) is defined by polynomials with coef-
ficients in R. Note also that x0 lies in ZA

i0 since r has been

chosen such that B(x?, r) ∩ ZA
i0 has an empty intersection

with all connected components of V (fA)i0−1 ∩ Rn distinct
from ZA

i0 . This is a contradiction since r has been also chosen

small enough such that x? is the unique point B(x?, r)∩ZA
i0

which realizes dist(ZA
i0 , H). �

Proof of Theorem 2. We prove this result in three steps:

(i) there exists a non-empty Zariski open set O1 ⊂ GLn(C)
such that for all A ∈ GLn(Q) ∩ O1, the Zariski-closure

Cn−i+1 of V
(
X1, . . . , Xi−1,

∂fA

∂Xi+1
, . . . , ∂fA

∂Xn

)
\ V

(
∂fA

∂X1

)
has dimension at most 1;

(ii) ∀A ∈ O1, Cn−i+1 ∩ V
(

∂fA

∂X1

)
has dimension at most 0;

(iii) there exists a non-empty Zariski open set O2 ⊂ GLn(C)
such that for all A ∈ GLn(Q) ∩ O2, the n equations

X1, . . . , Xi−1, ∂fA

∂X1
, ∂fA

∂Xi+1
, . . . , ∂fA

∂Xn
intersect transversely.

Then, writing O = O1 ∩ O2 will give a non-empty Zariski
open set satisfying the announced properties.

The most difficult step is step (i). Its proof is widely
inspired by [2, Proposition 3].

Proof of step (i). First, since CA
1 = 0n−1 is the line {X1 =

· · · = Xn−1 = 0}, the first point of the statement is obvious
for i = n.

Let 1 ≤ i ≤ n−1. Remark that the differential dxf
A is the

matrix product
[

∂f
∂X1

(Ax) · · · ∂f
∂Xn

(Ax)
]
A. If we de-

note by aij the coefficients of the matrix A then this product

equals

[
n∑

k=1

ak1
∂f

∂Xk
(Ax) · · ·

n∑
k=1

ak,n
∂f

∂Xk
(Ax)

]
which

means that for 1 ≤ i ≤ n, ∂fA

∂Xi
(x) =

∑n
k=1 aki

∂f
∂Xk

(Ax).

For 1 ≤ i ≤ n−1, consider the mapping Φi: Cn×Cn(n−i) →
Cn−1 which maps a point (x, a1,i+1, a2,i+1,. . ., an,i+1, a1,i+2,
. . . , an,n), where x = (x1, . . . , xn), to(
x1, . . . , xi−1,

n∑
k=1

ak,i+1
∂f

∂Xk
(Ax), . . . ,

n∑
k=1

ak,n
∂f

∂Xk
(Ax)

)
.

Thus the Jacobian matrix at a point α = (x, a1,i+1, . . .) ∈
Cn × Cn(n−i) is the evaluation at Ax of the matrix

Ii−1 0 · · · · · · · · ·
∗ · · · ∗ ∂f

∂X1
· · · ∂f

∂Xn
0 · · · · · ·

... · · ·
... 0 · · · 0 ∂f

∂X1
· · · ∂f

∂Xn
0 · · · 0

... · · ·
... 0 · · · 0 · · · 0

. . . 0 · · · 0

∗ · · · ∗ 0 · · · 0 0 · · · 0 ∂f
∂X1
· · · ∂f

∂Xn


,

where Ii−1 is the identity matrix of size i− 1.
Consider the Zariski-open set VA of all points in Cn such

that at least one partial derivative of fA does not vanish.
Then we prove that the restriction of Φi to VA ×Cn(n−i) is
transverse to (0, . . . , 0) ∈ Cn−1. Indeed, we consider a point

α = (x, a1,i+1, . . . , ann) ∈ VA × Cn(n−i) with Φi(α) = 0.
Suppose that the Jacobian matrix Φi has not maximal

rank at α. Then all the partial derivative in the matrix have
to vanish. This implies that all the partial derivatives of
fA vanish too, which is impossible if α ∈ VA × Cn(n−i).
Thus the Jacobian matrix has maximal rank at α, which
means that α is a regular point of Φi. This is true for all

α ∈ Φ−1
i (0) ∩

(
VA × Cn(n−i)

)
therefore the restriction of

Φi is transverse to (0, . . . , 0) as announced. Then by the
Weak Transversality Theorem of Thom-Sard (see [9, The-
orem 3.7.4 p. 79]), there exists a Zariski-open set O1 ⊂
GLn(C) such that for all A ∈ GLn(Q) ∩ O1, the restriction

of Φi to VA×Cn(n−i) is transverse to (0, . . . , 0). This means

that for all A ∈ GLn(Q)∩O1, the equations ∂fA

∂Xi+1
= 0, . . .,

∂fA

∂Xn
= 0, X1 = 0, . . ., Xi−1 = 0 intersect transversely at any

of their common solutions which are in VA. In particular

this is true for the solutions in
{

∂fA

∂X1
6= 0
}
⊂ VA. Finally,

this means that if the algebraic variety

V

(
X1, . . . , Xi−1,

∂fA

∂Xi+1
, . . . ,

∂fA

∂Xn

)
\ V

(
∂fA

∂X1

)Z
,

which is precisely CA
n−i+1, has dimension one or is empty. �

Proof of step (ii). Let O1 be the Zariski-closed open set
given in the previous proof. Let A ∈ GLn(Q) ∩ O1 and
let i ∈ {1, . . . , n − 1}. Then according to step (i), CA

n−i+1

has dimension at most one. Assume that CA
n−i+1∩V

(
∂fA

∂X1

)
is nonempty. Then by definition, CA

n−i+1 is not included

in V
(

∂fA

∂X1

)
. By Krull’s Principal Ideal Theorem [19, Cor.

3.2 p. 131], we deduce that dim
(
CA
n−i+1 ∩ V

(
∂fA

∂X1

))
=

dim(CA
n−i+1)−1 ≤ 0. Then, FA

n−i+1 = CA
n−i+1∩V

(
∂fA

∂X1

)
∩

V
(

∂fA

∂X2
, . . . , ∂fA

∂Xn

)
has also dimension less than 0.

Let i = n and assume that F1 6= ∅. Then if A is
generic enough, it is clear that there exists k ∈ {1, . . . , n}
such that CA

1 = 0n−1 in not contained in V
(

∂fA

∂Xk

)
. As



above, by Krull’s Principal Ideal Theorem we deduce that

dim
(
CA
1 ∩ V

(
∂fA

∂Xk

))
= dim(CA

1 ) − 1 ≤ 0, which implies

that F1 = C1 ∩ V
(

∂fA

∂X1
, . . . , ∂fA

∂Xn

)
has dimension ≤ 0. �

Proof of step (iii). For 1 ≤ i ≤ n, consider the mapping

Ψi: Cn × Cn(n−i+1) → Cn+1 which maps a point

(x, a1,1, . . . , an,1, a1,i+1, a2,i+1, . . . , an,i+1, a1,i+2, . . . , an,n),

where x ∈ Cn to
(
x1, . . . , xi−1,

∂fA

∂X1
, ∂fA

∂Xi+1
, . . . , ∂fA

∂Xn

)
.

Consider the Zariski-open set VA of all points in Cn such
that at least one partial derivative of fA does not vanish. As
above, we prove that the restriction of Ψi to VA×Cn(n−i+1)

is transverse to (0, . . . , 0) ∈ Cn: we consider a point β =

(x, a1,i+1, . . . , ann) ∈ VA × Cn(n−i+1) with Φi(β) = 0. Be-
cause x ∈ VA, at least one partial derivative of fA does not
vanish at x, which means that at least one partial derivative
of f does not vanish at Ax. Thus the shape of the Jaco-
bian matrix of Ψi is such that it has maximal rank at β
and β is a regular point of Ψi. Therefore the restriction of
Ψi is transverse to (0, . . . , 0). Then by the Weak Transver-
sality Theorem of Thom-Sard, there exists a Zariski-open
set O2 ⊂ GLn(C) such that for all A ∈ GLn(Q) ∩ O2,

the restriction of Ψi to VA × Cn(n−i+1) is transverse to
(0, . . . , 0). This means that for all A ∈ GLn(Q) ∩ O2, the

equations ∂fA

∂X1
= 0, ∂fA

∂Xi+1
= 0, . . ., ∂fA

∂Xn
= 0, X1 = 0,

. . ., Xi−1 = 0 intersect transversely at any of their common
solutions which are in VA. Because ε is an infinitesimal,
the variety V

(
fA − ε

)
is smooth, thus is a subset of VA.

Then WA,f−ε
n−i+1 ∩ 0i−1 ∩ V

(
∂fA

∂X1

)
, that is the intersection of

V
(
X1, . . . , Xi−1,

∂fA

∂X1
, ∂fA

∂Xi+1
, . . . , ∂fA

∂Xn

)
with the hypersur-

face V (fA − ε), is empty. �

Proof of Theorem 3. We start with the third point.

Lemma 3. Let CA be a connected component of V (fA −
f?). For all i ∈ {1, . . . , n − 1}, for all x ∈ CA such that
x 6∈ V A

n−i+1, there exists a ball Bi containing x such that
dim

(
πi(Bi ∩ CA)

)
= i.

Proof. For i = n − 1, let x = (x1, . . . , xn) 6∈ V2. By
definition of V2, x is in the n−1-equidimensional component
of V (f − f?) and is not a critical point of the restriction
to C of πn−1. Then using the implicit functions theorem,
there exists a ball Bn−1 centered on x and a continuously
differentiable function φ such that for every y ∈ Bn−1, y ∈ C
iff y = (y1, . . . , yn−1, φ(y1, . . . , yn−1)). Then the image of
Bn−1 ∩ C by πn−1 has dimension n− 1.

Let i ∈ {1, . . . , n − 1} and assume that for all x 6∈ Vn−i,
there exists a ball Bn−i centered on x such that the pro-
jection πi+1 (Bn−i ∩ C) has dimension i + 1. Let us show
that this implies that for all x 6∈ Vn−i+1, there exists a ball
Bn−i+1 centered on x such that dim (πi (Bn−i+1 ∩ C)) = i.

Let x 6∈ Vn−i+1. If x 6∈ Vn−i then by assumption, there
exists a ball Bn−i centered on x such that the projection
πi+1 (Bn−i ∩ C) has dimension i + 1. It is clear that for all
j ≤ i + 1, πj (Bn−i ∩ C) has dimension j. In particular for
j = i, the result is proved.

Else, x ∈ Vn−i and x 6∈ Vn−i+1. By definition of Vn−i+1

and Vn−i, x belongs to the i-equidimensional component
of Vn−i. Then this component is locally defined by n − i
equations. Moreover, x is not in singular locus of Vn−i and
not in the critical locus of the projection πi. This means

that the Jacobian of the n − i equations defining locally
the i-equidimensional component of Vn−i with respect to
the variables xi+1, . . . , xn is invertible. Then the implicit
functions theorem applies and ensures that there exists a
ball Bn−i+1 centered on x and a continuously differentiable
function φ such that for every y ∈ Bn−i+1, y ∈ C iff y =
(y1, . . . , yi, φ(y1, . . . , yi)). Then the image of Bn−i+1 ∩C by
πn−i+1 has dimension i. �

Then we give the intuition of the proof of the first two
points. It consists by constructing recursively V A

n−i+1 from
V A
n−i with V A

n−d = V A. Suppose that we have found A such

that properties (i) and (ii) are satisfied by V A
n−i. Then, we

need to construct V A
n−i+1 in such a way that the boundary

of Πi(C
A) is contained in Πi(C

A∩V A
n−i+1). We will see that

the implicit function theorem and the properness property
of the restriction of Πi to V A

n−i enables us to choose V A
n−i+1

as the union of

• the j-equidimensional components of V A
n−i for 1 ≤ j ≤

i− 1
• the singular locus of the i-equidimensional component of
V A
n−i.

• the critical locus of the restriction of Πi to the i-equidi-
mensional component of V A

n−i;

Nevertheless, for this matrix A, the restriction of Πi−1 to
V A
n−i+1 may not be proper. Then, a generic change of vari-

ables on the coordinates X1, . . . , Xi will not alter V A
n−i+1

but will restore the properness property of Πi−1.
Our proof is widely inspired by the one of [26, Theorem

1 and Proposition 2] which state a similar result when V is
smooth and equidimensional.

As in [26], to obtain the existence of the Zariski-open set
O, we need to adopt an algebraic viewpoint.

Strategy of proof. To adopt this algebraic viewpoint, we
consider a finite family F ⊂ Q[X1, . . . , Xn] generating the
ideal associated to V which has dimension d. As in Section
2, X≤i denotes X1, . . . , Xi for 1 ≤ i ≤ n and X≥i denotes
Xi, . . . , Xn.

Let A be a n×n matrix whose entries are new indetermi-
nates (Ai,j)1≤i,j≤n. Define fA ∈ Q(Ai,j)[X] as fA = f(AX).
Thus, FA denotes the set obtained by performing the change
of variables A on all polynomials in F. This notation is also
used for polynomial ideals. We will also denote by k an
algebraic closure of Q(Ai,j). Finally, given an ideal I in
k[X1, . . . , Xn] where k is a field, we denote by G(I) a finite
set of generators (e.g. a Gröbner basis) of I.

Our construction is recursive. We start by defining ∆A
n−d=

〈FA〉 ⊂ Q(Ai,j)[X]. Remark that dim(∆A
n−d) = d and ∆A

n−d

is radical (since 〈F〉 is so). Then, for 1 ≤ i ≤ d, we denote by
∆A

n−d,n−i the intersection of the prime ideals of co-dimension

n − i associated to ∆A
n−d if such prime ideals exist, else we

fix ∆A
n−d,n−i = 〈1〉; we will also denote ∩0≤i≤k∆A

n−d,n−i by

∆A
n−d,≥n−k.

Now, we describe how we define recursively ∆A
n−i+1 from

∆A
n−i for 1 ≤ i ≤ d. In the sequel, ∆n−i,n−j denotes the

intersection of prime ideals of co-dimension n − j if such
prime ideals exist else we fix ∆n−i,n−j = 〈1〉.

Our construction works as follows. We consider the alge-
braic set defined by ∆A

n−i,n−i in kn and its equidimensional
component of dimension i that we denote by Vn−i,n−i here
after.

We start by constructing the ideal associated to the union



of the singular locus of Vn−i,n−i and the critical locus of
Πi restricted to Vn−i,n−i. If ∆A

n−i,n−i = 〈1〉 then we let

MA
n−i = 〈1〉 else MA

n−i is the ideal generated by the (n− i)-
minors of jac(G(∆A

n−i,n−i),X≥i+1) and ΣA
n−i+1 be the rad-

ical ideal
√

∆A
n−i,n−i + MA

n−i. By construction, the ideal

ΣA
n−i+1 is the ideal associated to the union of the singular

locus of Vn−i,n−i and the critical locus of the restriction of
Πi to Vn−i,n−i. Thus, the definition of ΣA

n−i+1 does not
depend on G(∆A

n−i+1).
Then, we define ∆A

n−i+1 as ΣA
n−i+1 ∩∆A

n−i,≥n−i+1.
As said above, we will consider linear change of vari-

ables. Consider a matrix Br = GLn(Q) of the form Br =[
B′ 0
0 In−r

]
, where B′ is square of size r, In−r is the iden-

tity matrix of size n − r. We let B = ABr whose entries
are linear forms in the entries of A; then for f ∈ Q(Ai,j)[X],
SubsB(f) denotes the polynomial obtained by substituting
in f the entries of A by those of B. If I is an ideal in
Q(Ai,j)[X], then IBr denotes the ideal {f(BrX) | f ∈ I}
and SubsB(I) denotes the ideal {SubsB(f) | f ∈ I}.

Lemma 4. Let r ≤ i. If ∆ABr
n−i = SubsB(∆A

n−i), then

∆ABr
n−i+1 = SubsB(∆A

n−i+1).

Proof. The proof is done by induction. We detail be-
low the induction; the initialization step being obtained by
substituting i by d+ 1 in the sequel.

By assumption ∆ABr
n−i = SubsB(∆A

n−i). Recall that these
ideals are radical. Consequently, the uniqueness of prime de-
composition implies that ∆ABr

n−i,n−i = SubsB(∆A
n−i,n−i) and

∆ABr
n−i,≥n−i+1 = SubsB(∆A

n−i,≥n−i+1). Thus, to conclude it

is sufficient to prove that ΣABr
n−i+1 = SubsB(ΣA

n−i+1). Let

G = G(∆A
n−i,n−i). Since ∆ABr

n−i,n−i = SubsB(∆A
n−i,n−i), we

get 〈GBr 〉 = 〈SubsB(G)〉. Equality 〈GBr 〉 = 〈SubsB(G)〉
implies that both ideals define the same algebraic variety V
in kn. By construction, the ideal ΣABr

n−i+1 is the ideal associ-
ated to the union of the singular locus of V and the critical
locus of the restriction of Πi to V. The same statement
occurs for SubsB(ΣA

n−i+1) so these ideals coincide. �
Let k be a field; given an ideal I ⊂ k[X], we denote by
R(I) the following property: Let P be a prime ideal appear-

ing in the prime decomposition of
√
I, and r its dimension.

Then k[X≤r]→ k[X]/P is integral.

Proposition 2. Let i ∈ {1, . . . , d+ 1}, the ideal ∆A
n−i+1

satisfies property R, and has dimension at most i− 1.

Proof. We prove the property by decreasing induction on
i = d+ 1, . . . , 1. The case i = d+ 1 is obtained following the
Noether Normalization Theorem.

Let us now assume that the property holds for index i +
1, and prove it for index i. We first establish property
R(∆A

n−i+1). The dimension property will follow from it since
it implies that Πi restricted the variety defined by ∆A

n−i+1

is a finite map. Then, the algebraic Bertini-Sard theorem
allows us to conclude.

Preliminaries. Recall that ∆A
n−i+1 =ΣA

n−i+1∩∆A
n−i,≥n−i+1.

Since R(∆A
n−i) holds by assumption, R(∆A

n−i,≥n−i+1) holds

trivially. Thus, it is sufficient to prove that R(ΣA
n−i+1)

holds. Recall also that ΣA
n−i+1 is the radical of ∆A

n−i,n−i +

MA
n−i where MA

n−i is the ideal generated by the (n−i)-minors
M1, . . . ,MN of jac(G(∆A

n−i,n−i),X≥i+1). We will consider

this intersection process incrementally since for proving that
R(∆A

n−i,n−i +MA
n−i) holds, it is enough to prove that prop-

erty R(∆A
n−i,n−i+〈M1, . . . ,Mj〉) holds for 1 ≤ j ≤ N . Note

that by assumption R(∆A
n−i+1) holds and we prove below

by increasing induction that if R(∆A
n−i,n−i + 〈M1, . . . ,Mj〉)

holds thenR(∆A
n−i,n−i+〈M1, . . . ,Mj+1〉) holds. To simplify

notations, we fix ∆ = ∆A
n−i,n−i + 〈M1, . . . ,Mj〉, M = Mj+1

and ∆′ = ∆ + 〈M〉 for 0 ≤ j ≤ N − 1.

Consider now the prime decomposition ∩`P`≤L of
√

∆ for
some L and remark that the set of prime components of√

∆′ is the union of the prime components of
√
P` + 〈M〉 for

1 ≤ ` ≤ L. Consequently, it is enough to prove that P`+〈M〉
satisfies property R for those ` such that P` + 〈M〉 6= 〈1〉.
Thus, as in [26], we partition {1, . . . , L} in four subsets:

• ` ∈ L+ if dim(P`) = r and M ∈ P`;
• ` ∈ L− if dim(P`) = r, M /∈ P` and P` + 〈M〉 6= 〈1〉;
• ` ∈ S if dim(P`) = r, M /∈ P` and P` + 〈M〉 = 〈1〉;
• ` ∈ R if dim(P`) 6= r.

We will prove that R(P` + 〈M〉) holds for ` ∈ L+∪L− while
letting r ≤ i vary will conclude the proof.

For ` ∈ L+, M ∈ P`, P` + 〈M〉 = P` while R(P`) holds by
assumption; the conclusion follows. Suppose now that ` ∈
L−. Since P` is prime, by Krull’s Principal Ideal Theorem,
P` + 〈M〉 has dimension r − 1 and is equidimensional. By
[26, Lemma 1], it is sufficient to prove that the extension
Q(Ai,j)[X≤r−1] → Q(Ai,j)[X≤r−1]/(P` + 〈M〉) is integral
which is what we do below.

Proving the integral extension. This step of the proof is
common with the one of [26, Proposition 1];. we summa-
rize it. By assumption, the extension Q(Ai,j)[X≤r]→ A` =
Q(Ai,j)[X≤r]/P` is integral, it is only needed to prove that
P`+〈M〉 contains a monic polynomial in Q(Ai,j)[X≤r−1][Xr].
To this end, the characteristic polynomial of the multiplica-
tion by M in A` is naturally considered and more particu-
larly, we consider its constant term α`. Since ` ∈ L−, M
does not divide zero in A` and α` is not a constant (and
hence it is not zero). Moreover, by Cayley-Hamilton’s The-
orem, α` ∈ P` + 〈M〉. This polynomial α` is proved to be
monic in Xr hereafter.

Consider a matrix B = GLn(Q) which lets invariant the
last n − r variables and such that α`(BX) is monic in Xr

(recall that r ≤ i). Following mutatis mutandis the reason-
ing of [26, Sect 2.3] (paragraph entitled Introduction of a
change of variables), we get that

• the constant term of the multiplication by M(BX) mod-
ulo PB

` is α`(BX);
• the constant term of the multiplication by SubsB(M) mod-

ulo SubsB(P`) is SubsB(α`);

Note that we have chosen B such that α`(BX) is monic
in Xr. Thus, if we prove that α`(BX) = SubsB(α`), we
are done (recall that SubsB only consists in substituting the
entries of Ai,j with those of AB which do not depend on
X1, . . . , Xn).

Since B lets invariant the last n−r variablesXr+1, . . . , Xn,
we get from Lemma 4 that ∆B = SubsB(∆) and MB =
SubsB(M). The uniqueness of prime decomposition implies
that {PB

` , ` ∈ L} = {SubsB(P`), ` ∈ L}. Moreover, since
dim(SubsB(P`)) = dim(PB

` ) = dim(P`), we also have

{PB
` , ` ∈ L+ ∪ L− ∪ S} = {SubsB(P`), ` ∈ L+ ∪ L− ∪ S}



The rest of the reasoning is the same as the one of [26].
Indeed, the above equality implies that for ` ∈ L−, there
exists `′ ∈ L+ ∪ L− ∪ S such that SubsB(P`) = PB

` . Since
MB = SubsB(M), the characteristic polynomials of MB

modulo PB
`′ coincides with the characteristic polynomial of

SubsB(M) modulo SubsB(P`), so SubsB(α`) = α`′(BX).
Recall now that α` is neither 0 nor a constant, then `′ ∈ L−.
Thus, SubsB(α`) = α`′(BX) is monic in Xr as requested.�

As in [26, Subsection 6.4], this property specializes. For
A ∈ GLn(Q), we denote by ∆A

n−i+1 the ideal obtained by
substituting the entries of A by those of A. The proof of
the result below is skipped but follows mutatis mutandis the
one of [26, Proposition 2].

Proposition 3. There exists a non-empty Zariski open
set O ⊂ GLn(C) such that for A in O, the following holds.
Let 1 ≤ i ≤ d + 1, PA be one of the prime components of
∆A

n−i+1, and r its dimension. Then C[X≤r]→ C[X]/PA is
integral.

Once the above result is proved, one can conclude the
proof of properness properties by using a result of [16] re-
lating the properness property and the above normalization
result. More precisely, we use [26, Proposition 3] that we
restate below in a form that fits with our construction:

Proposition 4. [26] Let A be in GLn(C) and 1 ≤ i ≤
d+ 1. The following assertions are equivalent.

• For every prime component PA of ∆A
n−i+1, the following

holds. Let r be the dimension of PA; then C[X≤r] →
C[X]/PA is integral.
• The restriction of Πr to V (PA) is proper.

Finally, we define V A
n−i ⊂ Cn as the algebraic variety as-

sociated to ∆A
n−i for 0 ≤ i ≤ d. For j ≤ i, we denote

by V A
n−i,n−j ⊂ Cn (resp. V A

n−i,≥n−j ⊂ Cn) the algebraic

variety associated to ∆A
n−i,n−j (resp. ∆A

n−i,≥n−j). Con-

sider now a connected component C of V A
n−i ∩ Rn. It is the

union of some connected components C1, . . . , Ck of the real
algebraic sets V A

n−i,n−j1 ∩ Rn, . . . , V A
n−i,n−jk

∩ Rn. Conse-
quently, the boundary of Πi(C) is contained in the bound-
ary of ∪1≤`≤kΠi(C`). By construction of V A

n−i+1, if j` > i
then the boundary of Πi(C`) is contained in Πi(V

A
n−i+1).

By construction of V A
n−i+1, V A

n−i+1,n−i+1 is the union of the

singular points of V A
n−i,n−i and the critical locus of Πi re-

stricted to V A
n−i,n−i. Thus, if j` = i, the properness of Πi

restricted to V A
n−i,n−i implies that the boundary of Πi(Ci)

is contained in the image by Πi of C ∩ V A
n−i+1,n−i+1. This

leads to the following lemma which concludes the proof.

Lemma 5. Let A ∈ O ∩GLn(Q) be such that for 1 ≤ i ≤
d+1 and all prime components PA of ∆A

n−i+1 the restriction
of Πr to V (PA) is proper and CA be a connected component
of V A

n−d ∩Rn. Then the boundary of Πi(C
A) is contained in

Πi(V
A
n−i+1).
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for polynomial system solving. J. Complexity, 17(1):154–211,
2001.

[14] F. Guo, M. Safey El Din, and L. Zhi. Global optimization of
polynomials using generalized critical values and sums of
squares. In Proceedings of ISSAC 2010, pages 107–114, New
York, NY, USA, 2010. ACM.
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[26] M. Safey El Din and É. Schost. Polar varieties and computation
of one point in each connected component of a smooth
algebraic set. In Proceedings of ISSAC 2003, pages 224–231
(electronic), New York, 2003. ACM.
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